Practical AI Roadmap Workbook for Business Executives
A clear, hype-free workbook showing where AI can actually help your business — and where it won’t.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.
Why This Workbook Exists
Modern business leaders face pressure to adopt AI strategies. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t have to be technical; you just need to know your operations well. AI is simply a tool built on top of those foundations.
How to Use This Workbook
Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A clear order of initiatives instead of scattered trials.
Think of it as a guide, not a form. Your AI plan should be simple enough to explain in one meeting.
AI strategy equals good business logic, simply expressed.
Step 1 — Business First
Begin with Results, Not Technology
Most AI discussions begin with tools and tech questions like “Can we use ChatGPT here?” — that’s backward. Instead, begin with clear results that matter to your company.
Ask:
• What top objectives are driving your business now?
• Where are teams overworked or error-prone?
• Where do poor data or slow insights hold back progress?
AI matters when it affects measurable outcomes like profit or efficiency. Ideas without measurable outcomes belong in the experiment bucket.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Ask: “What happens from start to finish in this process?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Each step has three parts: inputs, actions, MVP Building outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.
Rank and Select AI Use Cases
Assess Opportunities with a Clear Framework
Evaluate AI ideas using a simple impact vs effort grid.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Strategic Bets — high impact, high effort.
• Optional improvements with minimal value.
• High cost, low reward — skip them.
Add risk as a filter: where can AI act safely, and where must humans approve?.
Your roadmap starts with safe, effective wins.
Foundations & Humans
Get the Basics Right First
AI projects fail more from poor data than bad models. Check data completeness, process clarity, and alignment.
Human Oversight Builds Trust
Let AI assist, not replace, your team. Over time, increase automation responsibly.
The 3 Classic Mistakes
Avoid the Three AI Traps for Non-Tech Leaders
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Problem — learning without impact.
03. The Automation Mirage — expecting overnight change.
Fewer, focused projects with clear owners and goals beat scattered enthusiasm.
Collaborating with Tech Teams
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Ask vendors for proof from similar businesses — and what failed first.
Signals & Checklist
Signs Your AI Roadmap Is Actually Healthy
You can summarise it in one slide linked to metrics.
Your team discusses workflows and outcomes, not hype.
Pilots have owners, success criteria, and CFO buy-in.
The Non-Tech Leader’s AI Roadmap Checklist
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Is the data complete enough for repetition?
• Where will humans remain in control?
• How will success be measured in 90 days?
• If it fails, what valuable lesson remains?
The Calm Side of AI
AI done right feels stable, not overwhelming. Focus on leverage, not hype. When executed well, AI simply amplifies how you already win.